98 research outputs found

    Bayesian Learning and Predictability in a Stochastic Nonlinear Dynamical Model

    Get PDF
    Bayesian inference methods are applied within a Bayesian hierarchical modelling framework to the problems of joint state and parameter estimation, and of state forecasting. We explore and demonstrate the ideas in the context of a simple nonlinear marine biogeochemical model. A novel approach is proposed to the formulation of the stochastic process model, in which ecophysiological properties of plankton communities are represented by autoregressive stochastic processes. This approach captures the effects of changes in plankton communities over time, and it allows the incorporation of literature metadata on individual species into prior distributions for process model parameters. The approach is applied to a case study at Ocean Station Papa, using Particle Markov chain Monte Carlo computational techniques. The results suggest that, by drawing on objective prior information, it is possible to extract useful information about model state and a subset of parameters, and even to make useful long-term forecasts, based on sparse and noisy observations

    Funding climate adaptation strategies with climate derivatives

    No full text
    Climate adaptation requires large capital investments that could be provided not only by traditional sources like governments and banks, but also by derivatives markets. Such markets would allow two parties with different tolerances and expectations about climate risks to transact for their mutual benefit and, in so doing, finance climate adaptation. Here we calculate the price of a derivative called a European put option, based on future sea surface temperature (SST) in Tasmania, Australia, with an 18 °C strike threshold. This price represents a quantifiable indicator of climate risk, and forms the basis for aquaculture industries exposed to the risk of higher SST to finance adaptation strategies through the sale of derivative contracts. Such contracts provide a real incentive to parties with different climate outlooks, or risk exposure to take a market assessment of climate change.Support for this research came from the CSIRO Climate Adaptation Flagship, Enabling Adaptation Pathways project

    Use of remote-sensing reflectance to constrain a data assimilating marine biogeochemical model of the Great Barrier Reef

    Get PDF
    Skillful marine biogeochemical (BGC) models are required to understand a range of coastal and global phenomena such as changes in nitrogen and carbon cycles. The refinement of BGC models through the assimilation of variables calculated from observed in-water inherent optical properties (IOPs), such as phytoplankton absorption, is problematic. Empirically derived relationships between IOPs and variables such as chlorophyll-a concentration (Chl a), total suspended solids (TSS) and coloured dissolved organic matter (CDOM) have been shown to have errors that can exceed 100% of the observed quantity. These errors are greatest in shallow coastal regions, such as the Great Barrier Reef (GBR), due to the additional signal from bottom reflectance. Rather than assimilate quantities calculated using IOP algorithms, this study demonstrates the advantages of assimilating quantities calculated directly from the less error-prone satellite remote-sensing reflectance (RSR). To assimilate the observed RSR, we use an in-water optical model to produce an equivalent simulated RSR and calculate the mismatch between the observed and simulated quantities to constrain the BGC model with a deterministic ensemble Kalman filter (DEnKF). The traditional assumption that simulated surface Chl a is equivalent to the remotely sensed OC3M estimate of Chl a resulted in a forecast error of approximately 75 %. We show this error can be halved by instead using simulated RSR to constrain the model via the assimilation system. When the analysis and forecast fields from the RSR-based assimilation system are compared with the non-assimilating model, a comparison against independent in situ observations of Chl a, TSS and dissolved inorganic nutrients (NO3, NH4 and DIP) showed that errors are reduced by up to 90 %. In all cases, the assimilation system improves the simulation compared to the non-assimilating model. Our approach allows for the incorporation of vast quantities of remote-sensing observations that have in the past been discarded due to shallow water and/or artefacts introduced by terrestrially derived TSS and CDOM or the lack of a calibrated regional IOP algorithm

    Head injury from falls in children younger than 6 years of age

    Get PDF
    The risk of serious head injury (HI) from a fall in a young child is ill defined. The relationship between the object fallen from and prevalence of intracranial injury (ICI) or skull fracture is described. Method Cross-sectional study of HIs from falls in children (<6 years) admitted to UK hospitals, analysed according to the object fallen from and associated Glasgow Coma Score (GCS) or alert, voice, pain, unresponsive (AVPU) and CT scan results. Results Of 1775 cases ascertained (median age 18 months, 54.7% boys), 87% (1552) had a GCS=15/AVPU=alert. 19.3% (342) had a CT scan: 32% (110/342) were abnormal; equivalent to 5.9% of the overall population, 16.9% (58) had isolated skull fractures and 13.7% (47) had ICI (49% (23/47) had an associated skull fracture). The prevalence of ICI increased with neurological compromise; however, 12% of children with a GCS=15/AVPU=alert had ICI. When compared to falls from standing, falls from a person's arms (233 children (mean age 1 year)) had a significant relative OR for a skull fracture/ICI of 6.94 (95% CI 3.54 to 13.6), falls from a building (eg, window or attic) (mean age 3 years) OR 6.84 (95% CI 2.65 to 17.6) and from an infant or child product (mean age 21 months) OR 2.75 (95% CI 1.36 to 5.65). Conclusions Most HIs from a fall in these children admitted to hospital were minor. Infants, dropped from a carer's arms, those who fell from infant products, a window, wall or from an attic had the greatest chance of ICI or skull fracture. These data inform prevention and the assessment of the likelihood of serious injury when the object fallen from is known

    Ethnic differences in the clustering and outcomes of health behaviours during pregnancy: results from the Born in Bradford cohort

    Get PDF
    OBJECTIVE. Pregnancy is a time of optimal motivation for many women to make positive behavioural changes. We aim to describe pregnant women with similar patterns of self-reported health behaviours and examine associations with birth outcomes. METHODS. We examined the clustering of multiple health behaviours during pregnancy in the Born in Bradford cohort, including smoking physical inactivity, vitamin d supplementation, and exposure to second hand smoke. Latent class analysis was used to identify groups of individuals with similar patterns of health behaviours separately for White British (WB) and Pakistani mothers. Multinomial regression was then used to examine the association between group membership and birth outcomes, which included preterm birth and mean birth weight. RESULTS. For WB mothers, offspring of those in the ‘Unhealthiest’ group had lower mean birth weight than those in the ‘Mostly healthy but inactive’ class, although no association was observed for preterm birth. For Pakistani mothers, group membership was not associated with birth weight differences, although the odds of preterm birth was higher in ‘Inactive smokers’ compared to the ‘Mostly healthy but inactive’ group. CONCLUSION. The use of latent class methods provides important information about the clustering of health behaviours which can be used to target population segments requiring behaviour change interventions considering multiple risk factors. Given the dominant negative association of smoking with the birth outcomes investigated, latent class groupings of other health behaviours may not confer additional risk information for these outcomes

    Investigating the effectiveness and cost-effectiveness of FITNET-NHS (Fatigue In Teenagers on the interNET in the NHS) compared to activity management to treat paediatric chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME):amendment to the published protocol

    Get PDF
    The FITNET-NHS Trial is a UK, national, trial investigating whether an online cognitive behavioural therapy program (FITNET-NHS) for treating chronic fatigue syndrome/ME in adolescents is clinically effective and cost-effective in the NHS. At the time of writing (September 2019), the trial was recruiting participants. This article presents an update to the planned sample size and data collection duration previously published within the trial protocol. Trial registration: ISRCTN, ID: 18020851. Registered 8 April 2016

    Recruiting adolescents with CFS/ME to Internet-delivered therapy:Internal pilot within a randomised controlled trial

    Get PDF
    Background: Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) in adolescents is common and disabling. Teenagers in the United Kingdom are more likely to recover if they access specialist care, but most do not have access to a local specialist CFS/ME service. Delivering treatment remotely via the internet could improve access to treatment. Objective: This study aims to assess (1) the feasibility of recruitment and retention into a trial of internet-delivered specialist treatment for adolescents with CFS/ME and (2) the acceptability of trial processes and 2 web-based treatments (to inform continuation to full trial). Methods: This study is an internal pilot for the initial 12 months of a full randomized controlled trial (RCT), with integrated qualitative methods (analysis of recruitment consultations and participant and clinician interviews). Recruitment and treatment were delivered remotely from a specialist pediatric CFS/ME treatment service within a hospital in South West United Kingdom. Adolescents (aged 11-17 years) from across the United Kingdom with a diagnosis of CFS/ME and no access to local specialist treatment were referred by their general practitioner to the treatment center. Eligibility assessment and recruitment were conducted via remote methods (telephone and on the web), and participants were randomized (via a computer-automated system) to 1 of 2 web-based treatments. The trial intervention was Fatigue in Teenagers on the InterNET in the National Health Service, a web-based modular CFS/ME-specific cognitive behavioral therapy program (designed to be used by young people and their parents or caregivers) supported by individualized clinical psychologist electronic consultations (regular, scheduled therapeutic message exchanges between participants and therapist within the platform). The comparator was Skype-delivered activity management with a CFS/ME clinician (mainly a physiotherapist or occupational therapist). Both treatments were intended to last for up to 6 months. The primary outcomes were (1) the number of participants recruited (per out-of-area referrals received between November 1, 2016, to October 31, 2017) and the proportion providing 6-month outcome data (web-based self-report questionnaire assessing functioning) and (2) the qualitative outcomes indicating the acceptability of trial processes and treatments. Results: A total of 89 out of 150 (59.3% of potentially eligible referrals) young people and their parents or caregivers were recruited, with 75 out of 89 (84.2%) providing 6-month outcome data. Overall, web-based treatment was acceptable; however, participants and clinicians described both the advantages and disadvantages of remote methods. No serious adverse events were reported. Conclusions: Recruiting young people (and their parents or caregivers) into an RCT of web-based treatment via remote methods is feasible and acceptable. Delivering specialist treatment at home via the internet is feasible and acceptable, although some families prefer to travel across the United Kingdom for face-to-face treatment

    A clinical and economic evaluation of Control of Hyperglycaemia in Paediatric intensive care (CHiP): a randomised controlled trial.

    Get PDF
    BACKGROUND: Early research in adults admitted to intensive care suggested that tight control of blood glucose during acute illness can be associated with reductions in mortality, length of hospital stay and complications such as infection and renal failure. Prior to our study, it was unclear whether or not children could also benefit from tight control of blood glucose during critical illness. OBJECTIVES: This study aimed to determine if controlling blood glucose using insulin in paediatric intensive care units (PICUs) reduces mortality and morbidity and is cost-effective, whether or not admission follows cardiac surgery. DESIGN: Randomised open two-arm parallel group superiority design with central randomisation with minimisation. Analysis was on an intention-to-treat basis. Following random allocation, care givers and outcome assessors were no longer blind to allocation. SETTING: The setting was 13 English PICUs. PARTICIPANTS: Patients who met the following criteria were eligible for inclusion: ≥ 36 weeks corrected gestational age; ≤ 16 years; in the PICU following injury, following major surgery or with critical illness; anticipated treatment > 12 hours; arterial line; mechanical ventilation; and vasoactive drugs. Exclusion criteria were as follows: diabetes mellitus; inborn error of metabolism; treatment withdrawal considered; in the PICU > 5 consecutive days; and already in CHiP (Control of Hyperglycaemia in Paediatric intensive care). INTERVENTION: The intervention was tight glycaemic control (TGC): insulin by intravenous infusion titrated to maintain blood glucose between 4.0 and 7.0 mmol/l. CONVENTIONAL MANAGEMENT (CM): This consisted of insulin by intravenous infusion only if blood glucose exceeded 12.0 mmol/l on two samples at least 30 minutes apart; insulin was stopped when blood glucose fell below 10.0 mmol/l. MAIN OUTCOME MEASURES: The primary outcome was the number of days alive and free from mechanical ventilation within 30 days of trial entry (VFD-30). The secondary outcomes comprised clinical and economic outcomes at 30 days and 12 months and lifetime cost-effectiveness, which included costs per quality-adjusted life-year. RESULTS: CHiP recruited from May 2008 to September 2011. In total, 19,924 children were screened and 1369 eligible patients were randomised (TGC, 694; CM, 675), 60% of whom were in the cardiac surgery stratum. The randomised groups were comparable at trial entry. More children in the TGC than in the CM arm received insulin (66% vs. 16%). The mean VFD-30 was 23 [mean difference 0.36; 95% confidence interval (CI) -0.42 to 1.14]. The effect did not differ among prespecified subgroups. Hypoglycaemia occurred significantly more often in the TGC than in the CM arm (moderate, 12.5% vs. 3.1%; severe, 7.3% vs. 1.5%). Mean 30-day costs were similar between arms, but mean 12-month costs were lower in the TGC than in CM arm (incremental costs -£3620, 95% CI -£7743 to £502). For the non-cardiac surgery stratum, mean costs were lower in the TGC than in the CM arm (incremental cost -£9865, 95% CI -£18,558 to -£1172), but, in the cardiac surgery stratum, the costs were similar between the arms (incremental cost £133, 95% CI -£3568 to £3833). Lifetime incremental net benefits were positive overall (£3346, 95% CI -£11,203 to £17,894), but close to zero for the cardiac surgery stratum (-£919, 95% CI -£16,661 to £14,823). For the non-cardiac surgery stratum, the incremental net benefits were high (£11,322, 95% CI -£15,791 to £38,615). The probability that TGC is cost-effective is relatively high for the non-cardiac surgery stratum, but, for the cardiac surgery subgroup, the probability that TGC is cost-effective is around 0.5. Sensitivity analyses showed that the results were robust to a range of alternative assumptions. CONCLUSIONS: CHiP found no differences in the clinical or cost-effectiveness of TGC compared with CM overall, or for prespecified subgroups. A higher proportion of the TGC arm had hypoglycaemia. This study did not provide any evidence to suggest that PICUs should stop providing CM for children admitted to PICUs following cardiac surgery. For the subgroup not admitted for cardiac surgery, TGC reduced average costs at 12 months and is likely to be cost-effective. Further research is required to refine the TGC protocol to minimise the risk of hypoglycaemic episodes and assess the long-term health benefits of TGC. TRIAL REGISTRATION: Current Controlled Trials ISRCTN61735247. FUNDING: This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 18, No. 26. See the NIHR Journals Library website for further project information

    NEUROlogical Prognosis After Cardiac Arrest in Kids (NEUROPACK) study: protocol for a prospective multicentre clinical prediction model derivation and validation study in children after cardiac arrest

    Get PDF
    Introduction Currently, we are unable to accurately predict mortality or neurological morbidity following resuscitation after paediatric out of hospital (OHCA) or in-hospital (IHCA) cardiac arrest. A clinical prediction model may improve communication with parents and families and risk stratification of patients for appropriate postcardiac arrest care. This study aims to the derive and validate a clinical prediction model to predict, within 1 hour of admission to the paediatric intensive care unit (PICU), neurodevelopmental outcome at 3 months after paediatric cardiac arrest. Methods and analysis A prospective study of children (age: >24 hours and <16 years), admitted to 1 of the 24 participating PICUs in the UK and Ireland, following an OHCA or IHCA. Patients are included if requiring more than 1 min of cardiopulmonary resuscitation and mechanical ventilation at PICU admission Children who had cardiac arrests in PICU or neonatal intensive care unit will be excluded. Candidate variables will be identified from data submitted to the Paediatric Intensive Care Audit Network registry. Primary outcome is neurodevelopmental status, assessed at 3 months by telephone interview using the Vineland Adaptive Behavioural Score II questionnaire. A clinical prediction model will be derived using logistic regression with model performance and accuracy assessment. External validation will be performed using the Therapeutic Hypothermia After Paediatric Cardiac Arrest trial dataset. We aim to identify 370 patients, with successful consent and follow-up of 150 patients. Patient inclusion started 1 January 2018 and inclusion will continue over 18 months. Ethics and dissemination Ethical review of this protocol was completed by 27 September 2017 at the Wales Research Ethics Committee 5, 17/WA/0306. The results of this study will be published in peer-reviewed journals and presented in conferences. Trial registration number NCT03574025
    • …
    corecore